Identification of Oxa1 Homologs Operating in the Eukaryotic Endoplasmic Reticulum

Graphical Abstract

Highlights

- The “Oxa1 superfamily” comprises a group of membrane protein biogenesis factors

- Three ER-resident proteins, Get1, EMC3, and TMCO1, are members of the superfamily

- TMCO1, similar to bacterial YidC, associates with ribosomes and the Sec translocon

Authors

S. Andrei Anghel, Philip T. McGilvray, Ramanujan S. Hegde, Robert J. Keenan

Correspondence

bkeenan@uchicago.edu

In Brief

The absence of Oxa1/Alb3/YidC homologs in the eukaryotic endomembrane system has been a mystery. Now, Anghel et al. identify three ER-resident proteins, Get1, EMC3, and TMCO1, as remote homologs of Oxa1/Alb3/YidC proteins and show that TMCO1 possesses YidC-like biochemical properties. This defines the “Oxa1 superfamily” of membrane protein biogenesis factors.
Identification of Oxa1 Homologs Operating in the Eukaryotic Endoplasmic Reticulum

S. Andrei Anghel,1,2 Philip T. McGilvray,1 Ramanujan S. Hegde,3 and Robert J. Keenan1,4,*

1Department of Biochemistry and Molecular Biology
2Cell and Molecular Biology Graduate Program
3MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
4Lead Contact
*Correspondence: bkeenan@uchicago.edu
https://doi.org/10.1016/j.celrep.2017.12.006

SUMMARY

Members of the evolutionarily conserved Oxa1/Alb3/YidC family mediate membrane protein biogenesis at the mitochondrial inner membrane, chloroplast thylakoid membrane, and bacterial plasma membrane, respectively. Despite their broad phylogenetic distribution, no Oxa1/Alb3/YidC homologs are known to operate in eukaryotic cells outside the endosymbiotic organelles. Here, we present bioinformatic evidence that the tail-anchored protein insertion factor WRB/Get1, the "endoplasmic reticulum (ER) membrane complex" subunit EMC3, and TMCO1 are ER-resident homologs of the Oxa1/Alb3/YidC family. Topology mapping and co-evolution-based modeling demonstrate that Get1, EMC3, and TMCO1 share a conserved Oxa1-like architecture. Biochemical analysis of human TMCO1, the only homolog not previously linked to membrane protein biogenesis, shows that it associates with the Sec translocon and ribosomes. These findings suggest a specific biochemical function for TMCO1 and define a superfamily of proteins—the "Oxa1 superfamily"—whose shared function is to facilitate membrane protein biogenesis.

INTRODUCTION

Membrane proteins must be inserted into the appropriate lipid bilayer to perform their biological functions and avoid toxic aggregation (Chiti and Dobson, 2006; Kopito, 2000). The existence of different types of membrane proteins and, in eukaryotes, different target membranes poses a challenge for the cellular biosynthetic machinery. To overcome this challenge, cells have evolved different pathways for insertion into membranes. The best understood of these is a co-translational pathway that delivers nascent polypeptides to the Sec translocon, a conserved proteinaceous channel in eukaryotes and prokaryotes. This pathway mediates insertion of most membrane proteins into the prokaryotic plasma membrane and the eukaryotic endoplasmic reticulum (ER) (Nyathi et al., 2013).

Some membrane proteins, however, are inserted independently of the translocon. For example, in eukaryotes, tail-anchored (TA) proteins are inserted into the ER membrane by the WRB-CAML complex (Get1-Get2 in yeast; Mariappan et al., 2011; Schuldiner et al., 2008; Vilardi et al., 2011; Wang et al., 2011, 2014; Yamamoto and Sakisaka, 2012). TA proteins are topologically simple, comprising a cytosolic-facing N-terminal domain and a single C-terminal transmembrane domain (TMD). The extreme C-terminal location of their TMD precludes targeting through the co-translational pathway. As a result, TA proteins utilize a Sec-independent post-translational pathway for insertion (Kutay et al., 1995; Stefanovic and Hegde, 2007). This pathway is conserved in eukaryotes, but whether it operates in bacteria and archaea remains unknown.

In bacteria, certain proteins are inserted into the plasma membrane by co- and post-translational, translocon-independent pathways mediated by YidC (Dalbey et al., 2014; Pross et al., 2016). These substrates are generally small, topologically simple proteins that lack large or highly charged translocated regions (Dalbey et al., 2014). YidC also functions in a translocon-dependent mode, where it facilitates the insertion, folding, and/or assembly of substrates containing multiple TMDs (Kuhn et al., 2017). Homologs of YidC are present in the mitochondrial inner membrane (called Oxa1 and Cox18) and the chloroplast thylakoid membrane (Alb3 and Alb4; Wang and Dalbey, 2011). Like bacterial YidC, these proteins function in different contexts as insertases, chaperones, and assembly factors.

Although YidC homologs are widely conserved among bacteria and archaea (Borowska et al., 2015), none have yet been identified in the eukaryotic endomembrane system. The absence of any such homolog has been puzzling, because the eukaryotic endomembrane system is derived from invagination of the plasma membrane of a prokaryotic ancestor (Cavalier-Smith, 2002). Here, we present evidence that the ER membrane possesses multiple proteins related to the Oxa1/Alb3/YidC family. These include the WRB/Get1 subunit of the TA protein insertion factor WRB/Get1, which mediates insertion of most membrane proteins into the prokaryotic plasma membrane and the eukaryotic endoplasmic reticulum (Nyathi et al., 2013).

RESULTS

Phylogenetic and Functional Comparisons Define the Oxa1 Superfamily

In searching for archaeal homologs of the TA membrane protein insertion factor WRB/Get1, we identified a family of archaeal and...
eukaryotic membrane proteins annotated as “domain of unknown function 106” (DUF106) that are distantly related to the Oxa1/Alb3/YidC family (Figures 1A and 1B). The DUF106 group includes an archaeal family of uncharacterized membrane proteins, the eukaryotic “ER membrane complex” (EMC) subunit 3 (EMC3) family, and the eukaryotic “transmembrane and coiled coil domains 1” (TMCO1) family. DUF106 proteins appear to be phylogenetically ancient, as they are present in the Asgard archaea, a group of organisms postulated to be the closest living relative of the last common ancestor of both archaeans and eukaryotes (Spang et al., 2015; Zaremba-Niedzwiedzka et al., 2017).

Consistent with these phylogenetic observations, there are clear functional similarities between members of the Oxa1/Alb3/YidC clade and members of the other clades for which some biochemical activity has been established (Figures 1C–1F). For example, during co-translational, translocon-independent insertion of a substrate protein into the bacterial plasma membrane, YidC binds to ribosome-nascent chain complexes (RNCs) and directly contacts the hydrophobic nascent chain (Kumazaki et al., 2014a, 2014b). Similarly, the archaeal DUF106 protein Mj0480 (henceforth called the “YidC-like protein 1” or Ylp1) binds RNCs and can be crosslinked to a model substrate in vitro (Borowska et al., 2015). Moreover, the known translocon-independent substrates of YidC and Oxa1 and the post-translational substrates of Alb3 and WRB/Get1 are all simple membrane proteins with few transmembrane helices and small translocated regions (Aschtgen et al., 2012; Hegde and

Figure 1. Phylogenetic and Functional Comparison Defines the Oxa1 Superfamily

(A) Identification of remote DUF106 homologs using HHpred. Eukaryotic (human), bacterial (E. coli), and archaeal (M. jannaschi) proteomes were searched for each query (UniProt ID: WRB, O00258; Oxa1, Q15070; TMCO1, Q9UM00; EMC3, Q9P0I2; Ylp1, Q57904) using default settings in HHpred in “global” alignment mode. Top hits are listed, along with the HHpred probability score, the number of residues aligned, and the sequence identity.

(B) Maximum-likelihood tree of representative sequences. Branch lengths for the five main clades are indicated.

(C) During Sec-dependent, co-translational assembly and folding, substrates are delivered to the membrane by the ribosome; insertion requires participation of the Sec translocon. Substrates of this pathway typically contain multiple TMDs and/or large translocated regions. Superfamily members exemplifying this activity include bacterial YidC and chloroplast Alb3.

(D) During Sec-independent, co-translational insertion, topologically “simple” substrates that lack large or highly charged translocated regions are delivered to the membrane by the ribosome. Superfamily members exemplifying this activity include Oxa1 and YidC; archaeal Ylp1 proteins function similarly in vitro.

(E) Post-translational TMD repositioning, exemplified by Oxa1.

(F) During Sec-independent, post-translational insertion, topologically simple substrates are delivered to the membrane by soluble targeting factors. Superfamily members exemplifying this activity include WRB/Get1, which inserts tail-anchored proteins delivered by TRC40/Get3; chloroplast Alb3, which inserts specific proteins delivered to the thylakoid membrane by cpSRP43; and bacterial YidC.
Finally, although its precise function remains to be defined, the EMC has been linked to ERAD and biosynthesis of multi-pass membrane proteins (Richard et al., 2013; Satoh et al., 2015). Given these phylogenetic and functional similarities, we propose to assign these proteins as members of a superfamily, which we hereafter refer to as the Oxa1 superfamily.

Oxa1 Superfamily Members Share Topological and Structural Features

A key prediction is that, owing to their common ancestry and conserved function, all members of the Oxa1 superfamily share a common architecture. As noted previously (Borowska et al., 2015), comparison of the crystal structures of bacterial YidC (Kumazaki et al., 2014a, 2014b) and archaeal Ylp1 (Borowska et al., 2015) reveals considerable structural overlap, including a three-TMD core (colored) that harbors a lipid-exposed hydrophilic groove implicated in binding to nascent polypeptides during insertion.

Secondary structure and topology predictions for Get1, TMCO1, and EMC3 suggest they share this architecture (Figures 2B and S1), but the topology of these proteins has not been conclusively established. Indeed, a recent study proposed that...
TMCO1 has an N-in/C-in topology, with only two TMDs and a lumenal-facing coiled coil (Wang et al., 2016); this topology is incompatible with placement of TMCO1 into the Oxa1 superfamily.

To define the topology of Get1, TMCO1, and EMC3, we designed 3×Flag-tagged constructs containing a consensus glycosylation sequence at the N or C terminus or within the predicted cytosolic coiled coil or lumenal loop regions (Figures 2B and S2A). In all cases, we observed glycosylation of the N terminus and the loop between the second and third TMDs and no glycosylation of the C terminus or the coiled coil domain (Figure 2C). These data are consistent with the observation that the Get1 coiled coil binds to the cytosolic targeting machinery (Mariappan et al., 2011; Stefer et al., 2011; Wang et al., 2011) and with proteomic analyses showing that serine residues in the coiled coil and C-terminal regions of TMCO1 are phosphorylated by cytosolic kinases (Dephoure et al., 2008; Olsen et al., 2010).

We also performed an unbiased, 3D structure prediction of TMCO1, Get1, and EMC3 using distance restraints derived from evolutionarily coupled residue pairs (Wang et al., 2017). Remarkably, the top-ranked models for human TMCO1 and yeast Get1 recapitulated the core structural features of bacterial YidC and archaeal Ylp1 proteins, including a lumenal N terminus, cytosolic-facing coiled coil and C terminus, and a three-TMD core (Figures 2D, S2B, and S2D). The top-ranked EMC3 models also possessed a three-TMD core and a coiled coil motif between the first two TMDs but showed physically implausible orientations for the coiled coil and C terminus (Figure S2C); this may reflect the limited number of available sequence homologs, the relatively larger size of EMC3, and the absence of any membrane bilayer energy term. Nevertheless, these models suggest that members of the Oxa1 superfamily share a membrane topology and core architecture.

TMCO1 Interacts with the Ribosome and the Sec61 Translocon

A second prediction of the Oxa1 superfamily model is that all of the proteins function in some capacity in membrane protein biogenesis. To test this prediction, we focused on human TMCO1, the only member of the superfamily not yet linked to membrane protein biogenesis. TMCO1 is an ER-resident membrane protein that is conserved in most eukaryotes (Iwamuro et al., 1999). Genetic variations around TMCO1 are linked to glaucoma (Burdon et al., 2011; Sharma et al., 2012), and nonsense mutations cause a disorder associated with craniofacial dysmorphism, skeletal anomalies, and intellectual disability (Alanay et al., 2014; Caglayan et al., 2013; Xin et al., 2010).

We asked whether any of the interactions of TMCO1 are similar to those of the better characterized members of the Oxa1 superfamily. In the case of bacterial YidC, primary interaction partners include the Sec translocon and the ribosome (Figures 1C and 1D). We first explored whether TMCO1 is part of a complex with translating ribosomes, as would be expected if it functions in co-translational insertion like some members of the Oxa1 superfamily (Figures 1C and 1D).

When digitonin-solubilized HEK293 membranes were fractionated on a sucrose gradient, TMCO1 and Sec61 were present in the 80S ribosome fraction (Figure 3A). In contrast, Derlin-1, an abundant ER membrane protein not known to bind the ribosome, did not co-migrate with ribosomes. Next, we tested whether TMCO1 and Sec61 are part of the same ribosome-bound complex. After immunoprecipitating digitonin-solubilized membrane preparations from a 3×Flag-tagged TMCO1 HEK293 cell line (Figure S3A), we observed a complex containing TMCO1, Sec61, and ribosomes (Figure 3B). Thus, TMCO1-Sec61-ribosome complexes can be isolated from cells under native conditions.

We next explored whether TMCO1 can exist in complex with Sec61 in the absence of ribosomes, as is true for YidC (Botte et al., 2016; Duong and Wickner, 1997). To identify ribosome-independent complexes, we used antibodies that bind TMCO1 and Sec61β on epitopes expected to be occluded by a bound ribosome. After immunoprecipitating digitonin-solubilized canine pancreatic microsomes (which contain high levels of Sec61), the anti-TMCO1 antibody pulled down components of the Sec61 translocon (Figure 3C). As expected, none of the antibodies pulled down ribosomes or the control protein, Derlin-1. This suggests that TMCO1 and Sec61 can exist in the same complex in the absence of ribosomes.

Finally, we asked whether TMCO1 has an intrinsic affinity for ribosomes, as is the case for Oxa1 and some YidC homologs with long, positively charged C-terminal regions (Jia et al., 2003; Seitl et al., 2014). To test this prediction, we incubated recombinant, purified TMCO1 (Figure S3B) with unprogrammed ribosomes isolated from rabbit reticulocyte lysate. After sedimentation through a sucrose cushion, we observed ribosome-dependent pelleting of TMCO1 (Figure 3D). This interaction was salt sensitive, could be stabilized by chemical crosslinking, and was specific, because high concentrations of bulk RNA did not disrupt the interaction (Figures 3D, S3C, and S3D). Thus, in addition to its conserved structural features, TMCO1 shares key functional properties with members of the Oxa1/Alb3/YidC family, consistent with the predictions of the Oxa1 superfamily hypothesis.

DISCUSSION

Our phylogenetic, topological, and functional data identify an unexpected evolutionary relationship among a diverse group of integral membrane proteins that together define the Oxa1 superfamily. These proteins include bacterial YidC and its homologs in mitochondria and chloroplasts, archaeal Ylp1 proteins, and three ER-resident proteins: WRB/Get1; EMC3; and TMCO1. The best characterized members of the superfamily function in membrane protein biogenesis (Figures 1C–1F). In particular, Oxa1/Alb3/YidC proteins facilitate the insertion, folding, and/or assembly of a variety of membrane proteins (Wang and Dalbey, 2011), whereas the WRB/Get1 subunit of the GET pathway transmembrane complex mediates the insertion of TA membrane proteins into the ER (Hegde and Keenan, 2011). Similarly, the EMC3 subunit of the ER membrane complex has been proposed to play a role in membrane protein quality control (Richard et al., 2013) and biogenesis (Satoh et al., 2015).

The function of TMCO1 has been less clear. Here, we show that TMCO1 possesses an Oxa1-like architecture and that TMCO1-Sec61-ribosome complexes can be isolated from...
HEK293 cells under native conditions. We also show that TMCO1 can be isolated in ribosome-free complexes with Sec61 and that TMCO1 has an intrinsic affinity for ribosomes. These properties suggest that TMCO1 functions most analogously to bacterial YidC and may facilitate the co-translational insertion, folding, and/or assembly of newly synthesized membrane proteins into the ER membrane (Figures 1C and 1D).

This assignment is not incompatible with the previous proposal that TMCO1 functions as a Ca\(^{2+}\) channel (Wang et al., 2016). Indeed, other well-characterized membrane protein inserts, including the bacterial and eukaryotic Sec translocon (Sacchleru et al., 2017; Simon and Blobel, 1991; Simon et al., 1989; Wirth et al., 2003) and mitochondrial Oxa1 (Krüger et al., 2012), have also been shown to conduct ions. This activity is likely related to their ability to translocate polypeptides across a membrane bilayer, and the same may be true for TMCO1. Alternatively, TMCO1 may modulate the Ca\(^{2+}\) efflux properties of Sec61 (Erdmann et al., 2011; Lang et al., 2011) or facilitate the biogenesis of a protein that functions in Ca\(^{2+}\) transport.

We speculate that Oxa1 superfamily proteins are all descendants of an ancestral machine that could insert topologically “simple” membrane proteins into the bilayer. Over time, the need to handle more complex substrates with additional TMDs and/or larger translocated regions would have been satisfied by evolution of the translocon. Subsequently, Oxa1 superfamily members would have been freed to evolve more specialized functions in concert with other membrane-bound and soluble factors. This might manifest in the translocon-dependent chaperone activities of YidC and Alb3 and the evolution of eukaryotic WRB/Get1 and EMC3 to function in association with other integral membrane components. Likewise, adaptation of WRB/Get1 and Alb3 to post-translational insertion would have resulted from
modification of their cytosolic-facing coiled coil and C terminus for binding to the TRC40/Get3- and cpSRP54-targeting factors, respectively, instead of the ribosome.

The Oxa1 superfamily illustrates how a single structural scaffold has been diversified to handle the insertion, folding, and assembly of different proteins into different cellular membranes. The shared characteristics of Oxa1/Alb3/YidC and WRB/Get1 translocation-independent substrates raises the possibility that Oxa1 superfamily members might, under certain circumstances, act on overlapping sets of substrates in the ER. Consistent with this idea, it is notable that disruption of WRB (Sojka et al., 2014; Vogl et al., 2016), TMCO1 (Caglayan et al., 2013; Xin et al., 2010), or EMC3 (Ma et al., 2015) is non-lethal. Such functional redundancy would impart robustness to membrane protein biogenesis, particularly under conditions of stress (Aviram et al., 2016; Aviram and Schuldiner, 2014). Identifying the native substrates and molecular mechanisms underlying EMC3- and TMCO1-mediated biogenesis are important topics for future investigation.

EXPERIMENTAL PROCEDURES

Phylogenetic Analysis
The DUF106 protein from M. jannaschii (M0480/Yip1) was identified by HHpred (Söding et al., 2005) as a remote archaeal homolog of eukaryotic WRB/Get1. Expanded searches of eukaryotic, bacterial, and archaeal proteomes subsequently revealed a set of remote homologs, including Oxa1/Alb3/YidC, WRB/Get1, EMC3, TMCO1, and archaeal Yip1 proteins (Figure 1).

For each of these protein families, homologs were retrieved using PSI-Blast (Altschul et al., 1997) with an expected threshold cutoff of 10

An effort was made to include organisms as phylogenetically diverse as possible. Proteins in this list were then aligned using MUSCLE (Edgar, 2004). Gaps in the alignment were trimmed using TrimAl (Capella-Gutierrez et al., 2009) with a cutoff of 0.4. A maximum-likelihood phylogenetic tree was built using PhyML-SMS (Guindon and Gascuel, 2003) using nearest-neighbor interchange (NNI) and the Akaike information criterion.

TMCO1 and EMC3 Topology Analysis by Glycosylation Mapping
An N-terminally 3xFlag-tagged human TMCO1 construct, codon-optimized for bacterial expression, was subcloned into the pGFP plasmid (Clontech). EMC3 plasmids were identical but contained a cDNA-derived EMC3 sequence. The bacterial expression, was subcloned into the pGFP plasmid (Clontech). EMC3 cytopathovirus (CMV) promoter and an SV40 polyA signal. An opsin N-glycosylation tag was inserted at the indicated positions (Figure S2A). Plasmids were transformed into BY4741 yeast using the lithium acetate method (Gietz and Woods, 2002).

For glycosylation mapping experiments, yeast cells were picked off selective plates and grown for 1 hr in SD – URA +2% glucose at room temperature with 225 rpm shaking. Four A600 units were then collected and mixed with sodium azide to a final concentration of 0.01%, placed on ice, and lysed through a modified alkaline lysis method (Kushnirov, 2000). Cells were collected by centrifuging 3 min at 16,000 × g and then resuspended in 350 mM freshly diluted NaOH supplemented with 1 mM PMSF and 1 x Complete, Mini, EDTA-free Protease Inhibitor Cocktail tablets (Roche). After a 5-min incubation on ice, cells were collected by centrifuging 3 min at 16,000 × g and the supernatant was discarded. The cell pellet was resuspended in 120 μL of 1% SDS, 100 mM DTT, and 50 mM Tris (pH 6.8) and incubated for 5 min at 95°C, cooled to room temperature, and centrifuged 3 min at 16,000 × g to remove insoluble material. Only the supernatant was processed further. Buffer was adjusted to 5 mM Tris (pH 6.8), 50 mM HEPES (pH 7.4), 150 mM NaCl, 1% NP40, and 0.1% SDS and supplemented with 25 units of Benzonase (Sigma; E1014), split in half, and then treated with or without 20 units of PNGase F (Promega). Reactions were incubated for 4 hr at 37°C and then TCA precipitated, resuspended in Laemmli Sample Buffer, and analyzed by SDS-PAGE.

TMD Prediction and 3D Modeling
Transmembrane domain predictions were made with PolyPhobius (Käll et al., 2005) and TOPCONS (Tsirigos et al., 2015); coiled coil predictions were made with COILS (Lupas et al., 1994). RaptorX-Contact (Wang et al., 2017) was used to calculate contact maps from alignments of 584 TMCO1 (188 residues), 453 EMC3 (261 residues), 442 Get1 (235 residues), and 485 WRB (174 residues) sequences from different species. RaptorX-Contact uses sequence conservation, residue co-evolution, and contact occurrence patterns to improve contact prediction in difficult cases like these, where only relative few sequence homologs are available. Template-free 3D modeling was done in CNS (Brünger et al., 1998) using the predicted contacts as distance restraints, as implemented in the http://raptorx.uchicago.edu/ContactMap/ web server.

The 3D models for yeast Get1 and EMC3 show distortions in the highly charged coiled coil (Get1 and EMC3) and C-terminal regions (EMC3). In particular, these regions are observed to bend backward into the bilayer rather than extending away from it (Figures S2B and S2C). These non-physiologic conformations likely reflect the inclusion of a spurious restraint(s) in the 3D modeling, which does not explicitly account for the membrane (Wang et al., 2017). Thus, we constructed a hybrid model of Get1, in which the distorted coiled coil was replaced with the crystallographically defined Get1 coiled coil (PDB 3ZS8) by manually docking it as a rigid body between TM1 and TM2 (Figure 2D). Notably, in a covariation-based 3D model of WRB (the human homolog of Get1), the coiled coil adopts an energetically reasonable conformation (Figure S2B). No attempt was made to model EMC3 further, because no structural information is available for this protein.

Assay for In Vivo Association of TMCO1 with Ribosomes
The total HEK293 cell membrane fraction (in assay buffer: 150 mM potassium acetate; 50 mM HEPES [pH 7.4]; and 5 mM magnesium acetate) was solubilized by addition of recrystallized digitonin (Calbiochem; lot no. 2913883) by manually docking it as a rigid body between TM1 and TM2 (Figure 2D). Notably, in a covariation-based 3D model of WRB (the human homolog of Get1), the coiled coil adopts an energetically reasonable conformation (Figure S2B). No attempt was made to model EMC3 further, because no structural information is available for this protein.

Co-immunoprecipitation Analyses
For co-immunoprecipitations from canine pancreatic membranes (Promega), the membranes were resuspended in a buffer containing 250 mM potassium
acetate, 50 mM HEPES (pH 7.4), 5 mM magnesium acetate, 15% glycerol, and
3% recrystallized digitonin (Calbiochem; Kun et al., 1979). Solubilization was
allowed to proceed for 30 min on ice, and then insoluble material was removed
by centrifugation for 10 min at 10,000 g. The soluble fraction was then divided
equally and layered over preclear scintillation vials (MaxiSaf, Schott). A retained
polyethylene glycol (PEG) precipitate was removed by centrifugation for 1 hr
at 4°C with end-over-end mixing and then washed six times with 250 mM
potassium acetate, 50 mM HEPES (pH 7.4), 5 mM magnesium acetate, 15% glycerol,
and 0.1% digitonin. Bound proteins were eluted by three successive 10-min
incubations with 1 M glycine (pH 3) supplemented with 0.1% Fos-choline-12. Elutions
were then TCA precipitated, resuspended in Laemmli Sample Buffer, and analyzed
by SDS-PAGE.

For co-immunoprecipitations from 3xFLAG-TMCO1 HEK293 TReX cells, the
membrane fraction was isolated and washed twice with 250 mM potassium
acetate, 50 mM HEPES (pH 7.4), 10 mM magnesium acetate, and 250 mM
sucrose. Membranes were then resuspended in buffer containing 250 mM
sucrose, 300 mM potassium acetate, 50 mM HEPES (pH 7.4), and
10 mM magnesium acetate. Solubilization was allowed to proceed for 30
min on ice, and then insoluble material was removed by centrifugation for 10 min
at 10,000 g. The soluble fraction was then added to anti-Flag M2 resin
(Sigma) and incubated for 1 hr at 4°C with end-over-end mixing and then
washed four times with 350 mM potassium acetate, 50 mM HEPES (pH 7.4),
5 mM magnesium acetate, 250 mM sucrose, and 0.1% digitonin. Bound pro-
teins were eluted by three successive 10-min incubations with 1 M glycine (pH 3)
supplemented with 0.1% Fos-choline-12. Elutions were then TCA precipi-
tated, resuspended in Laemmli Sample Buffer, and analyzed by SDS-PAGE.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures
and three figures and can be found with this article online at https://doi.org/

ACKNOWLEDGMENTS

We thank T. Starr for advice with the phylogenetic tree construction; B. Zalis-V
for digitonin recrystallization; R. Rock, D.A. Drummond, and F. Bezanilla
for sharing equipment; D. Bishop for the yeast strain; and Keenan and Hegde
for digitonin recrystallization; R. Rock, D.A. Drummond, and F. Bezanilla
for advice. This work was supported by NIH R21 EY026719 and
three figures and can be found with this article online at

AUTHOR CONTRIBUTIONS

R.S.H. and R.J.K. conceived of the project. S.A.A. and P.T.M. performed the experiments.
S.A.A. and R.J.K. wrote the manuscript with input from all authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: May 17, 2017
Revised: October 18, 2017
Accepted: December 1, 2017
Published: December 26, 2017

REFERENCES

Albanay, Y., Ergüner, B., Utine, E., Haçanz, O., Kiper, P.O.S., Taşkuran, E.Z.,
Perçin, F., Uz, E., Sağiroglu, M.S., Yüksel, B., et al. (2014). TMCO1 deficiency

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W.,

The C-tail anchored Tssl subunit, an essential protein of the enterogaegrea-
(Escherichia coli) Sci-1 Type VI secretion system, is inserted by YidC.
MicrobiologyOpen 1, 71–82.

really know about targeting and translocation to the endoplasmic reticulum?

Haldénteufel, S., Dudek, J., Jung, M., Schorr, S., et al. (2016). The SN1D pro-
teins constitute an alternative targeting route to the endoplasmic reticulum.

Belin, S., Hacot, S., Daudignon, L., Therizols, G., Pourpe, S., Mertani, H.C.,

Borowska, M.T., Dominik, P.K., Angel, S.A., Kossiakoff, A.A., and Keenan,
23, 1715–1724.

Botte, M., Zaccari, N.R., Nijeholt, J.L., Martin, R., Knoop, K., Papai, G., Zou, J.,
the holo-translocon suggests a mechanism for membrane protein insertion.
Sci. Rep. 6, 38399.

Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-

Burdon, K.P., Macgregor, S., Hewitt, A.W., Sharma, S., Chidlow, G., Mills,
Genome-wide association study identifies susceptibility loci for open angle
glaucoma at TMCO1 and CDKN2B-AS1. Nat. Genet. 43, 574–578.

Caglayan, A.O., Per, H., Akgumus, G., Gumus, H., Baranoski, J., Canpolat,
M., Caślak, M., Yikilmaz, A., Bilguvar, K., Kumandas, S., and Gunel, M.
(2013). Whole-exome sequencing identified a patient with TMCO1 defect syndrome

a new tool for automated alignment trimming in large-scale phylogenetic analyses.

Cavalier-Smith, T. (2002). The phagotrophic origin of eukaryotes and phylo-

Chiti, F., and Dobson, C.M. (2006). Protein misfolding, functional amyloid,

Dehoure, N., Zhou, C., Villién, J., Beausoleil, S.A., Bakalarski, C.E., Elledge,

Duong, F., and Wickner, W. (1997). Distinct catalytic roles of the SecYE, SecG
and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J. 16,
2758–2768.

and high throughput. Nucleic Acids Res. 32, 1792–1797.

Erdmann, F., Schäuble, N., Lang, S., Jung, M., Honigmann, A., Ahmad, M., Du-
ulin with Sec61δ and Sec61δ/δ subunits of preprotein translocase holoenzyme.

tylate/single-stranded carrier DNA/polyethylene glycol method. Methods

3714 Cell Reports 21, 3708–3716, December 26, 2017

Supplemental Information

Identification of Oxa1 Homologs Operating in the Eukaryotic Endoplasmic Reticulum

S. Andrei Anghel, Philip T. McGilvray, Ramanujan S. Hegde, and Robert J. Keenan
Figure S1. Multiple sequence alignment of members of the Oxa1 superfamily, related to Figure 2.

PROMALS3D was used with standard parameters and without any user-defined constraints. TMD predictions from TOPCONS are highlighted; TMDs in the conserved core are colored as in the PDB file.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDs of the Oxa1/Alb3/YidC family are colored from TOPCONS</td>
<td>Figure S1. Multiple sequence alignment of members of the Oxa1 superfamily, related to Figure 2.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMD1</td>
<td>TMD2</td>
<td>TMD3</td>
<td>TMD4</td>
<td>TMD5</td>
<td>TMD6</td>
<td>TMD7</td>
<td>TMD8</td>
<td>TMD9</td>
<td>TMD10</td>
<td>TMD11</td>
<td>TMD12</td>
<td>TMD13</td>
<td>TMD14</td>
<td>TMD15</td>
</tr>
<tr>
<td>VGVYQVLVQ</td>
</tr>
<tr>
<td>FGVYQELNPGWNVVVY</td>
</tr>
<tr>
<td>FGVYQELNPGWNVVVY</td>
</tr>
<tr>
<td>KV</td>
</tr>
<tr>
<td>KV</td>
</tr>
<tr>
<td>KV</td>
</tr>
<tr>
<td>KV儿童</td>
</tr>
<tr>
<td>KV儿童</td>
</tr>
<tr>
<td>KV儿童</td>
</tr>
<tr>
<td>KV儿童儿童</td>
</tr>
<tr>
<td>KV儿童儿童儿童</td>
</tr>
<tr>
<td>KV儿童儿童儿童儿童</td>
</tr>
</tbody>
</table>

Legend:

- **TMD1** to **TMD15** represent transmembrane domains.
- **KV** represents the conserved core.
- **KV儿童** represents specific motifs within the conserved core.
- **KV儿童儿童** represents additional motifs within the conserved core.
- **KV儿童儿童儿童** represents highly conserved motifs within the conserved core.
Figure S2. Additional details for the topology mapping experiments and 3D modeling, related to Figure 2. (A) Constructs used for glycosylation mapping. An opsin tag (red) containing two N-glycosylation sites (underlined) was inserted at the indicated positions of human TMCO1, human EMC3 and yeast Get1. Tag positions correspond to the native (untagged) sequence. For the TMCO1 and EMC3 constructs, a GSS linker connects the 3xFlag tag and the protein sequence. For the N-terminally opsin-tagged Get1 sequence, a 3xGSS linker was inserted before the first TMD, as sufficient distance from the membrane is required for effective glycosylation. (B) Co-variation-based 3D models of human WRB (left) and yeast Get1 (right), as in Figure 2D; note how the highly charged coiled-coil region of yeast Get1 (brown) bends back into the membrane bilayer (grey bars) in a non-physiologic conformation; this is likely due to the lack of a membrane bilayer energy term during 3D modeling (see Methods). In this case, a better, hybrid model is obtained by replacing the distorted coiled-coil (brown) with a crystallographically-defined Get1 coiled-coil (yellow; PDB 3ZS8) by manually docking it as a rigid body between TM1 and TM2 (see also Figure 2D). (C) Co-variation based 3D model of human EMC3 colored as in Figure 2D; a coiled-coil motif between TM1 and TM2, and the three TM core are both visible. However, similar to the yeast Get1 model, the coiled-coil and extended C-terminal region (both features colored brown) adopt physically implausible orientations in which they become embedded in the bilayer, despite being highly charged. (D) Heat maps of the RaptorX probabilities of two residues being in close proximity (<8 Å); higher probabilities are darker.
Figure S3. Additional characterization of the ribosome binding properties of TMCO1 in cells and in vitro, related to Figure 3. (A) Western blot analysis of TMCO1 expression levels in wild-type (WT) HEK293 cells, CRISPR/Cas9 generated knockout (KO) HEK293 cells, an integrated 3xFlag-tagged TMCO1 cell line and either KO or WT cells transfected with a 3xFlag-tagged TMCO1 construct either with ('Opt') or without ('Nat') codon optimization. A stain-free image of the gel prior to PVDF transfer shows that equal amounts of protein were loaded in each lane. Note that the transfected constructs express at lower levels than endogenous TMCO1 ('WT', lane 1). (B) Size-exclusion chromatography (SEC) of Ni-NTA affinity purified, recombinant TMCO1 in DMNG; pooled fractions are shown at right. (C) Sucrose gradient analysis of recombinant TMCO1 after chemical crosslinking to nuclease-treated rabbit reticulocyte lysate ribosomes. TMCO1 co-sediments with 80S ribosomes (but not the 40S ribosomal small subunit), while free TMCO1 remains at the top of the gradient. (D) Sedimentation analysis of TMCO1-ribosome complexes in the presence of excess competitor RNA; assays contained 1 µM TMCO1, 0.1 µM ribosomes and the indicated concentrations of competitor RNA.
SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Antibodies
Antiserum against human TMCO1 was generated by Lampire Biologicals. Rabbits were immunized with a KLH conjugated EKKETITESAGRQKK peptide, located in the cytosolic coiled-coil of TMCO1. Exsanguination bleed was supplemented with 0.02% sodium azide, flash-frozen in liquid nitrogen and stored at -80°C. For immunoprecipitation experiments, antibody was thawed and used immediately without further purification. For western blotting, initial experiments used unpurified serum; other experiments used peptide affinity purified antibody.

Antibodies against L17 (Abgent), S16 (Santa Cruz) and Derlin-1 (Abcam) were purchased, and antibodies against Sec61α and Sec61β were characterized previously (Gorlich et al., 1992).

Cell culture
HEK293-Cas9 cells containing a 3xFlag-Cas9 construct integrated into the genome were generated from HEK293 Flp-In T-REx cells (Invitrogen). A TMCO1 knockout line derived from these cells was generated at the Genome Engineering Core Facility at the University of Chicago, using a guide RNA with the sequence 5'-GAAACAATAACAGAGTCAGCTGG-3'. Cas9 expression was induced by addition of doxycycline at 10 ng/mL, followed by transfection of a gRNA-expressing plasmid. Single cells were then seeded into 96 well plates allowed to grow clonally. The final TMCO1 knockout line was verified by both genomic DNA sequencing and immunoblotting with an α-TMCO1 antibody (Figure S3A).

A separate cell line containing an N-terminally Flag tagged TMCO1 was also generated at the same facility using a previously described two step strategy (Xi et al., 2015). The resulting cell line has one nonfunctional TMCO1 allele and one allele containing a 3xFlag-tagged TMCO1 with a 13 amino acid linker (ITSYNVCYTKLSG, from the Cre-lox recombination) before the TMCO1 ORF. The 3xFlag-TMCO1 lines were verified by both genomic DNA sequencing and immunoblotting with α-TMCO1 and α-Flag antibodies (Figure S3A).

Cells were grown in DMEM supplemented with 10% Fetal Bovine Serum (Gemini Benchmark; Lot #A99D00E) and penicillin/streptomycin mixture (Invitrogen). The culture medium was also supplemented with 15 µg/mL Blasticidin and 100 µg/mL Hygromycin B for the TMCO1 knockout and 3xFlag-TMCO1 cell line generation procedure, but not when growing cells for other applications.

Isolation of total membrane fraction from HEK293 cells
Cells were harvested at a density of 70-100% while growing. Media was removed and cells were scraped into DPBS. Cells were collected by 5 min at 500 x g centrifugation at 4°C, and then lysed osmotically (Sabatini, 2014) by resuspending in a volume of HM Buffer (10 mM Hepes pH 7.5, 10 mM potassium chloride, 1 mM magnesium chloride) equal to 3.5x the volume of the cell pellet. Cells were allowed to swell on ice for 15 minutes, followed by 15 strokes of a douncer
with a tight-fitting pestle (Kontess). Sucrose was then added to 250 mM to balance osmolarity. Nuclei were then removed by pelleting 3 minutes at 700 x g, and the supernatant was centrifuged 10 minutes at 10,000 x g to collect the membrane fraction. Contrary to previous studies, in our hands this was sufficient to pellet most biological membranes of interest, including the endoplasmic reticulum, Golgi, plasma membrane and mitochondria. The membranes were then washed with assay buffer (150 mM potassium acetate, 50 mM Hepes pH 7.4, 5 mM magnesium acetate) and centrifuged again 10 minutes at 10,000 x g to remove any residual cytosolic proteins.

Membranes used for sucrose cushions, gradients, and pull-downs were further treated with micrococcal nuclease to digest polysomes as follows: reaction was supplemented with calcium acetate to 1 mM and 100 Units of micrococcal nuclease (NEB), incubated 10 minutes at 25°C, and then quenched by addition of EGTA to 2 mM. Membranes were then washed again with assay buffer to remove nuclease.

Recombinant TMCO1 production

The gene encoding human TMCO1 was amplified by PCR from total human testicular cDNA (Biosettia), subcloned into a pET28b vector (Novagen) encoding an N-terminal 6xHis tag followed by a TEV protease site, and verified by DNA sequencing. TMCO1 encoding vectors were transformed into E. coli BL21(DE3) and colonies from these transformations were used to inoculated terrific broth (TB, Fisher) starter cultures in baffled flasks containing 50 µg/mL kanamycin. 50 mL starter cultures were grown overnight at 37°C and 250 rpm. 1 L TB cultures containing 50 µg/mL kanamycin were inoculated with 3 mL of starter culture, grown at 37°C, and shaken at 250 rpm until they reached an A₂₆₀ of 0.6. Expression was induced by addition of 0.1 mM isopropyl-β-d-thiogalactoside (IPTG, Sigma) and growth was continued for 4 hrs at room temperature and 250 rpm. Cells were harvested by centrifugation and pellets frozen at -80°C.

Frozen cell pellets were resuspended in 35 mL ice cold lysis buffer (500 mM NaCl, 50 mM Hepes pH 7.5, 10 mM imidazole pH 7.5, 20 µM EDTA pH 8, 1 mM PMSF, 2 mM DTT, 5% glycerol (v/v)) supplemented with 10 µg/mL DNaseI and 0.5 mg/mL of lysozyme. Resuspended pellets were dounced five times on ice and lysed by passages twice through a high pressure microfluidizer. Lysate was clarified by centrifugation at 18,500 x g for 45 min at 4°C. To pellet bacterial membranes, the crude lysate supernatant was subjected to centrifugation at 120,000 x g for 1 hr at 4°C. Pelleted membranes were resuspended gently with a paintbrush in 40 mL ice cold lysis buffer, supplemented with 1% Decyl Maltose Neopentyl Glycol (DMNG, Anatrace), and incubated overnight (~14 hrs) at 4°C with gentle end-over-end mixing. Detergent soluble material was isolated by centrifugation at 120,000 x g for 1 hr at 4°C and batch purified by TALON affinity chromatography (Clonetech). The column was washed with 10 column volumes of lysis buffer supplemented with 15 mM Imidazole pH 7.5 (25 mM Imidazole total) and 0.07% DMNG. Protein was eluted in elution buffer (500 mM NaCl, 50 mM Hepes pH 7.5, 2 mM DTT, 300 mM imidazole pH 7.5, 0.07% DMNG) and further purified by size exclusion
chromatography (Superdex 200, 10/300 GL, GE Healthcare) in 500 mM NaCl, 50 mM Hepes pH 7.4, 2 mM DTT, 0.07% DMNG at room temperature. Desired fractions were pooled and concentrated in a 50 kDa MWCO Amicon ultra centrifugal filter (Millipore). 10% glycerol was added before flash freezing and storage in aliquots at -80°C. Protein concentration was determined by Bradford assay.

Assays for in vitro association of TMCO1 with ribosomes

High-salt stripped ribosomes were prepared from rabbit reticulocyte lysate (Green Hectares Farm). After supplementing with 350 mM KCl, the lysate was layered on top of a high density, high salt sucrose cushion (1 M sucrose, 500 mM KCl, 50 mM Tris pH 7.4, 5 mM MgCl$_2$), and subjected to centrifugation at 250,000 x g for 2 hrs at 4°C (TLA100.3, Beckman-Coulter). After incubating the pellet with ribosome buffer (250 mM sucrose, 150 mM KCl, 50 mM Tris pH 7.4, 5 mM MgCl$_2$) for 1 hr on ice, KCl was added to 500 mM and ribosomes were again pelleted through a high density, high salt sucrose cushion. Ribosome pellets were gently resuspended in ribosome buffer, aliquoted, and flash frozen for storage at -80°C.

Ribosome binding assays were carried out in binding buffer (150 mM KCl, 50 mM Tris pH 7.4, 5 mM MgCl$_2$, 0.07% DMNG), with 100 nM purified rabbit reticulocyte ribosomes and a 10-fold molar excess (1 µM) of purified, recombinant TMCO1 in a total volume of 100 µL. After incubating for 1 hr at 4 °C, 80 µL of the binding reaction was pelleted through a sucrose cushion (1 M sucrose, 150 mM KCl, 50 mM Tris pH 7.4, 5 mM MgCl$_2$, 0.07% DMNG) for 2 hr 250,000 x g at 4°C (TLA100.3, Beckman-Coulter). Pellets were washed with 1 mL of ice cold water and resuspended in 40 µL of 1x lithium dodecyl sulphate sample buffer supplemented with 100 mM β-mercaptoethanol. Competition assays were performed as described above, but with the addition of either tRNA or polyA RNA at the indicated concentrations before incubation.

In vitro crosslinking was performed by adding fresh DSP (in DMSO) to a final concentration of 250 µM, followed by incubation for 10 minutes at room temperature. Reactions were quenched by the addition of Tris pH 7.4 to a final concentration of 100 mM, followed by an additional 10 min incubation on ice. NaCl was added to 500 mM to dissociate uncrosslinked TMCO1 from the ribosome. To separate ribosomal subunits after crosslinking, samples were incubated with 2 mM puromycin and 1 mM PMSF for 30 min on ice, then 20 minutes at 37°C. Crosslinked, puromycin-treated samples were separated by centrifugation through a high salt sucrose gradient (10-50% sucrose, 500 mM NaCl, 50 mM Hepes pH 7.5, 0.07% DMNG, 5 mM MgCl$_2$) at 130,000 x g (SW28.1, Beckman-Coulter) for 14 hrs at 4°C. 1 mL fractions were collected manually from the top of the gradient, TCA precipitated, and analyzed by SDS-PAGE.
SUPPLEMENTAL REFERENCES

